
Measuring Parallelism
or

“I used MPI, what do you mean it’s not
efficient???”

Jon Johansson
AICT, University of Alberta

Copyright 2010, University of Alberta 1Measuring Parallelism, May 3, 2010

Why Parallel Computing?
• we want to save time!
• we want answers now so we can move on to new

questions
– results/insight/understanding/publications in less time

• with a serial program doubling the number of
calculations doubles the time it takes to get results
– if we made a mistake when starting a job that takes 3

weeks we have to redo it
– this wastes time (3 weeks, unless we get it wrong the

second time)
• a parallel program would waste less life-time for the same amount

of computational work

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 2

Which Time?

• Wall clock time:
– the time that passes on

the clock watched by a
human being waiting for
his program to run

• CPU time:
– the time that the

computer's CPU spends
processing instructions
for a particular task

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 3

Matlab has used 3:00 min of cpu
time – 45 secs wall clock time on 4
cpus

Parallel Processors Compress Time
• by harnessing multiple

CPUs/cores we compress a
bunch of calculation time
(CPU time) into a short
amount of wall time (the
measure of your life)

• if we have 100 processors
working on our program
exclusively, 24 hours/day we
are effectively living one
hundred times longer
– perhaps this is a bit of an

overstatement, but lets move
on

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 4

I should
have

learned MPI

Split the Work

• try to split the work into
pieces that can be done
by different processes

• distribute the work to
the CPUS

• we can split the tasks or
the data

Copyright 2010, University of Alberta 5Measuring Parallelism, May 3, 2010

Types of Parallelism
Task parallelism Data parallelism

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 6

Different programs operate
on copies of the same data
- functional decomposition

Copies of the same program
operate on different data
- domain decomposition

Presenter
Presentation Notes
Chain Chomp image from:
 http://themushroomkingdom.net/images/mkdd/mkdd_chain_chomp.jpg

Felix the Cat image from:
 http://www.freewebs.com/pezzo68/felix_socialist.gif

Today’s Common System Architecture

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 7

It’s up to this
network to create a
single memory space
for an SMP,
otherwise it’s just a
cluster

Presenter
Presentation Notes
The big green blob in the center is easy to understand in a cluster,
it’s just a network switch. Each node has its own memory and cpus
and a separate instance of the operating system runs on each node.

If the green blob is very special it can tie all the memory into a
single address space, combining all the nodes into one large
machine. There is one instance of the operating system running
on the machine controlling all the cpus and accessing all the
combined memory as a unit.

Copyright 2010, University of Alberta

Speedup
• how can we measure how much faster our program runs

when using more than one processor?
• define Speedup S as:

– the ratio of 2 program execution times
– constant problem size

• T1 is the execution time for the problem on a single
processor
– Absolute Speedup if this is measured with the “best” serial

implementation
– Relative Speedup if we use the parallel implementation with one

CPU
• remember that algorithms probably change when moving to parallel

• TP is the execution time for the problem using P processors

PT
TS 1=

8Measuring Parallelism, May 3, 2010

Copyright 2010, University of Alberta

Speedup
• Ideal (Linear) speedup

– the time to execute the problem
decreases by the number of
processors

– if a job requires 1 week with 1
processor it will take less that 10
minutes with 1024 processors

• referred to as:
– embarrassingly parallel
– stupidly parallel
– perfectly parallel

• doesn’t take much effort to turn
the problem into a bunch of
parts that can be run in parallel:

– parameter searches
– rendering the frames in a

computer animation
– brute force searches in

cryptography

9Measuring Parallelism, May 3, 2010

A Parallel Program
• if we can use many CPUs

efficiently, we can
– run simulations faster
– increase problem sizes
– run simulations at greater

accuracy
• run a program on a cpu that

can provide 1 gigaflop/s (109

flop/s)
• if you need 1 teraflop/s (1012

flop/s) to finish the calculation
in a reasonable time you can
use 1000 cpus
– you need to use them

efficiently!

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 10

Your Program

A Parallel Program
• some of the program is

serial, some parallel
• would like to use a

number of processors at
the same time to speed
up calculations
– the problem must be

broken into parts that can
be solved concurrently

– each part of the problem
becomes a program to run
on its own processor

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 11

Your Program

Example: Convolution - discrete

• in 2 dimensions the
convolution is:

• apply a 3x3 filter to the
image

∑

∑
∞

−∞=
−−

∞

−∞=
−−

=

=

ji
jijnim

ji
jnimjinm

gf

gfgf

,
,,

,
,,,)*(

→f→g

12Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010

Presenter
Presentation Notes
The filter g is also called the “convolution kernel”

Convolution - discrete

x x x

x x x

x x x

• for each image point:
• multiply the

corresponding filter
and image values

• sum the result
• multiply by a

normalizing factor if
necessary

• for a 3x3 filter each new
image point requires 9
multiplies and 8 adds

13Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010

Presenter
Presentation Notes
The filter g is also called the “convolution kernel”

Convolution - discrete

-1,-1 -1,0 -1,1

0,-1 0,0 0,1

1,-1 1,0 1,1

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

1,13,30,12,31,11,3

1,03,20,02,21,01,2

1,13,10,12,11,11,1

3

1,
2,2,2,2)*(

−−−−

−

−

=
−−

+++

+++

++=

= ∑

gfgfgf
gfgfgf

gfgfgf

gfgf
ji

jiji

→f→g

1,1 1,0 1,-1

0,1 0,0 0,-1

-1,1 -1,0 -1,-1

14Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010

Presenter
Presentation Notes
Rotate the filter by 180 deg, overlay it on the image pixels,
multiply corresponding elements in the image and filter
and sum.

Convolution Calculation – Serial
• the calculation involves 4 nested

loops
• two outside loops move over the

image
• two inside loops do multiplication

and sum for new image point

• image size: 7000x7000
• filter size: 7x7

• Serial times:
– program: 34.13 sec
– loops: 29.7 sec
– serial section: 4.42 sec
– max speedup = 34.13/4.42 = 7.7

for(i = offset; i < nx + offset; i++) {
for(j = offset; j < ny + offset; j++) {
// Operate in each pixel in the

image with the filter
sum = 0.0;
for(m = 0; m < nf; m++) {
for(n = 0; n < nf; n++) {
sum = sum + filter[m][n] *
paddedimage[i-offset+m][j-
offset+n];

}
}
newimage[i][j] = sum;

}
}

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 15

Presenter
Presentation Notes
The parts of the program outside of these loops won’t be
parallelized

Convolution Calculation - OpenMP
• to create OpenMP threads

and tell OpenMP that we
are parallelizing a loop we
can combine two directives:
#pragma omp parallel

• and
#pragma omp for

• into the directive
#pragma omp parallel for

#pragma omp parallel for private (i,j,m,n,sum)
schedule(dynamic,1)

{
for(i = offset; i < nx + offset; i++) {

for(j = offset; j < ny + offset; j++) {
// Operate in each pixel in the image with the

filter
sum = 0.0;
for(m = 0; m < nf; m++) {
for(n = 0; n < nf; n++) {
sum = sum + filter[m][n] * paddedimage[i-

offset+m][j-offset+n];
}

}
newimage[i][j] = sum;

}
}

}

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 16

Presenter
Presentation Notes
The parts of the program outside of these loops won’t be
parallelized

Speedup Example

• timing the parallel
section shows that the
loops parallel very well

• it might be fair to say
that most effort to
parallelize programs
happens in loops

• recall that in the serial
program we measured
– program: 34.13 sec
– loops: 29.7 sec

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 17

Speedup Example

• recall that in the serial
program we measured
– program: 34.13 sec
– loops: 29.7 sec

• there is work being
done outside the loops
in the serial region

• time the whole
program

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 18

Copyright 2010, University of Alberta

Amdahl’s Law
• Gene Amdahl: 1967
• parallelize some of the program

– some must remain serial
• f is the fraction of the

calculation that is serial
• 1-f is the fraction of the

calculation that is parallel
• the maximum speedup that can

be obtained by using P
processors is:

P
ff

S)1(
1

max −
+

=

f 1-f

serial parallel

19Measuring Parallelism, May 3, 2010

Copyright 2010, University of Alberta

Amdahl’s Law

• if 25% of the calculation must remain serial
the best speedup you can obtain is 4

• need to parallelize as much of the program as
possible to get the best advantage from
multiple processors

20Measuring Parallelism, May 3, 2010

Speedup Example

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 21

Loop parallelizes nicely

Serial work prevents the
program from speeding up
well

Amdahl limit S = 7.7

Presenter
Presentation Notes
How many processors to run this program on?
Ed’s Rule says use the maximum speedup in the mauve region.
Some would say that we should stick closer to the ideal line.

Copyright 2010, University of Alberta

Speedup
• why do a speedup test?
• it’s hard to tell how a program

will behave on many processors
• “Your Program” is actually

fairly common behaviour for
un-tuned code
– in this case:

• linear speedup to ~12
cpus

• after 27 cpus speedup is
starting to decrease

• QUESTION: how many
cpus to run this
program?

22Measuring Parallelism, May 3, 2010

Presenter
Presentation Notes
We want to use resources efficiently
We certainly wouldn’t use more than 27 CPUs because
the program actually slows down
 S(16) is about 13
 S(26) is about 18
how to use the computer most efficiently?

How to Measure Speedup?

• on Linux use the shell time function
• on Windows the C time library function clock()

returns wall time
– on Linux this gives CPU time

• Fortran: system_clock() returns wall time
• MPI: MPI_Wtime()
• OpenMP: omp_get_wtime()
• There Is a Way!
Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 23

Presenter
Presentation Notes
Clock image from

http://cache.gawker.com/assets/images/4/2009/06/504x_mississippi-clock.jpg

Summary
• use Linux

– Intro to Linux,
Understanding Bash

• write programs
– Linux Programming,

Fortran
• make your programs run

efficiently
– Code Optimization

• parallelize your programs
– MPI, Using a Linux Cluster

• use other technologies
– Ruby, Matlab

• you don’t know how
efficiently your program
uses multiple
processors until you do
a speedup test
– do a speedup test

• DO a speedup test!

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 24

Presenter
Presentation Notes
Speedy Gonzales from
http://images.pictureshunt.com/pics/c/cartoon_speedy_gonzales-5258.jpg

It’s Not Easy to Make it Fast

"Sequential programming is really hard, and
parallel programming is a step beyond that.“
– Andrew Tanenbaum, quoted at the June 2008 Usenix

conference

MINIX 3:
http://www.minix3.org/

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 25

http://www.minix3.org/�

Resources

• OpenMP docs:
http://openmp.org/wp/

• MPICH2 docs:
http://www.mcs.anl.gov/research/projects/mpich2/

• MPI, The Complete Reference – online book
http://www.netlib.org/utk/papers/mpi-book/mpi-
book.html

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 26

http://openmp.org/wp/�
http://www.mcs.anl.gov/research/projects/mpich2/�
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html�
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html�

Questions?

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 27

Presenter
Presentation Notes
Image from: http://www.fincher.org/images/2008-04-30-Parallel.jpg

Granularity
• a qualitative measure of

the ratio between
computation and
communication or
synchronization

• fine-grain: a small
amount of work is done
before communication is
required

• coarse-grain: a large
amount of work is done
before communication is
required

Copyright 2010, University of Alberta 28Measuring Parallelism, May 3, 2010

Presenter
Presentation Notes
Granularity
In order to coordinate between different processors working on the same problem, some form of communication between them is required
The ratio between computation and communication is known as granularity.
Fine-grain parallelism
All tasks execute a small number of instructions between communication cycles
Low computation to communication ratio
Facilitates load balancing
Implies high communication overhead and less opportunity for performance enhancement
If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation.
Coarse-grain parallelism
Typified by long computations consisting of large numbers of instructions between communication synchronization points
High computation to communication ratio
Implies more opportunity for performance increase
Harder to load balance efficiently
The most efficient granularity is dependent on the algorithm and the hardware environment in which it runs
In most cases overhead associated with communications and synchronization is high relative to execution speed so it is advantageous to have coarse granularity.

Parallel Errors

• there are two types of errors that occur only in a
parallel program:

• Race Conditions
– a result depends on which thread executes a section

of code first
– this leads to unpredictable results

• Deadlocks
– two threads are each waiting for a result from the

other
– no work gets done

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 29

Types of Speedup
• we have been discussing

Strong Scaling
– the problem size is fixed and we

increase the number of
processors

• decrease computational time
(Amdahl Scaling)

– the amount of work available
to each processor decreases as
the number of processors
increases

– eventually, the processors are
doing more communication
than number crunching and the
speedup curve flattens

– difficult to have high efficiency
for large numbers of processors

• we are often interested in
Weak Scaling
– double the problem size when

we double the number of
processors

• constant computational
time (Gustafson scaling)

– the amount of work for each
processor stays roughly
constant

– parallel overhead is (hopefully)
small compared to the real
work the processor does

• weather prediction

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 30

Gustafson’s Law

• keep the total time of
execution fixed

• the serial part of the
program is fixed

• increase the parallel
work as the number of
processors N increases
– increase grid size

• work done by each
thread is constant

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 31

)1(−−= NfNS
f is the serial fraction of the
program
S is the speedup

Gustafson’s Law

Copyright 2010, University of Alberta Measuring Parallelism, May 3, 2010 32

7x7 filter

14x14 filter

21x21 filter

28x28 filter16 threads

9 threads

4 threads

1

	Measuring Parallelism�or�“I used MPI, what do you mean it’s not efficient???”
	Why Parallel Computing?
	Which Time?
	Parallel Processors Compress Time
	Split the Work
	Types of Parallelism
	Today’s Common System Architecture
	Speedup
	Speedup
	A Parallel Program
	A Parallel Program
	Example: Convolution - discrete
	Convolution - discrete
	Convolution - discrete
	Convolution Calculation – Serial
	Convolution Calculation - OpenMP
	Speedup Example
	Speedup Example
	Amdahl’s Law
	Amdahl’s Law
	Speedup Example
	Speedup
	How to Measure Speedup?
	Summary
	It’s Not Easy to Make it Fast
	Resources
	Questions?
	Granularity
	Parallel Errors
	Types of Speedup
	Gustafson’s Law
	Gustafson’s Law

