
©
 2

0
1
0
 T

h
e
 M

a
th

W
o
rk

s
,
In

c
.

® ®

Workshop:

Parallel Computing with MATLAB

Eric Johnson Application Engineer

Konrad Malkowski Application Support Engineer

2

® ®

Outline

 Introduction to Parallel Computing Tools

 Using Parallel Computing Toolbox

 Task Parallel Applications

 Data Parallel Applications

3

® ®

Worker Worker

Worker

Worker

Worker
Worker

Worker

WorkerTOOLBOXES

BLOCKSETS

Parallel Computing with MATLAB

4

® ®

Parallel Computing with MATLAB

User’s Desktop

Parallel Computing Toolbox

MATLAB Workers

MATLAB Distributed

Computing Server

Compute Cluster

5

® ®

Solving Big Technical Problems

Large data set

Challenges

Long running

Computationally

intensive

Wait

Load data onto

multiple machines

that work together

in parallel

Solutions

Run similar tasks

on independent

processors in

parallel

Reduce size

of problem

You could…

6

® ®

Parallel Computing Toolbox API

 Task-parallel Applications

 Using the parfor constructs

 Using jobs and tasks

 Data-parallel Applications

 Using distributed arrays

 Using the spmd construct

7

® ®

Task-parallel Applications

 Converting for to parfor

 Configurations

 Scheduling parfor

 Creating jobs and tasks

 When to Use parfor vs. jobs and tasks

 Resolving parfor Issues

 Resolving jobs and tasks Issues

8

® ®

Toolboxes with Built-in Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Simulink Design Optimization

 Bioinformatics Toolbox

 Communications Toolbox

 ….

Worker

Worker

Worker

WorkerWorker

Worker

WorkerTOOLBOXES

BLOCKSETS

Contain functions that directly leverage functions from the

Parallel Computing Toolbox

9

® ®

Opening and Closing a matlabpool…

Open and close a matlabpool with two labs

10

® ®

Determining the Size of the Pool…

11

® ®

One Pool at a Time

Even if you have not exceeded the number of labs, you can only

open one matlabpool at a time

12

® ®

Add Shortcut for Starting the matlabpool

13

® ®

Add Shortcut for Stopping the matlabpool

14

® ®

Example: Parameter Sweep of ODEs

 Solve a 2nd order ODE

 Simulate with different

values for b and k

 Records and plots peak values



  0
,...2,1,...2,1

5

xkxbxm 
0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

\task_parallel\paramSweepScript.m

15

® ®

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(10, 1)

parfor i = 1:10

a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

WorkerWorker

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

16

® ®

Converting for to parfor

 Requirements for parfor loops

 Task independent

 Order independent

 Constraints on the loop body

 Cannot “introduce” variables (e.g. eval, load, global, etc.)

 Cannot contain break or return statements

 Cannot contain another parfor loop

17

® ®

Advice for Converting for to parfor

 Use M-Lint to diagnose parfor issues

 If your for loop cannot be converted to a parfor,

consider wrapping a subset of the body to a function

 Read the section in the documentation on

classification of variables

 http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

18

® ®

Resolving parfor Issues

 Let’s look at a common parfor issues and how to go

resolving them

19

® ®

Unclassified Variables

The variable A cannot be properly classified

task_parallel\valid_indexing_error.m

20

® ®

parfor Variable Classification

 All variables referenced at the top level of the parfor

must be resolved and classified

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different

iterations of the loop

Broadcast A variable defined before the loop whose value is used

inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,

regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or

reduction variables, not available outside the loop

21

® ®

Variable Classification Example

Loop variable

Temporary variable

Sliced input variable

Broadcast variable

Reduction variable

Sliced output variable

22

® ®

At the end of this loop, what is the

value of each variable?

task_parallel\what_is_it_parfor.m

23

® ®

Results
a: ones(1:10) (broadcast)

b: undefined (temp)

c: undefined (temp)

d: 1:10 (sliced)

e: 55 (reduction)

f: 5 (temp)

g: 20 (reduction)

h: 10 (temp)

idx: undefined (loop)

24

® ®

parfor issue: Nested for loops

Within the list of indices for a sliced variable, one of these indices is of the form i, i+k, i-k, k+i,

or k-i, where i is the loop variable and k is a constant or a simple (non-indexed) variable; and

every other index is a constant, a simple variable, colon, or end.

task_parallel\valid_indexing_error.m

25

® ®

parfor issue: Solution 1

Create a temporary variable, b to store the row vector. Use the looping index, i, to index

the columns and the colon to assign the row vector to the temporary variable between the

for loops.

task_parallel\valid_indexing_fix1.m

26

® ®

parfor issue: Solution 2

Use cell arrays. The restrictions on indexing only apply to the top-level indexing (i.e.

indexing into the cell array). Indexing into contents of the cell arrays is allowed.

task_parallel\valid_indexing_fix2.m

27

® ®

Using parfor with Simulink

 Can use parfor with sim.

 Must make sure that the Simulink workspace contains the

variables you want to use.

 Within main parfor body: Use ‘base’ workspace

 Use assignin to place variables in base workspace.

 Note: the base workspace when using parfor is different

than the base workspace when running serially.

task_parallel\simParforEx1.m

28

® ®

Parallel Computing Tools Address…

Long computations

 Multiple independent iterations

 Series of tasks

Large data problems

parfor i = 1 : n

% do something with i

end

Task 1 Task 2 Task 3 Task 4

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Task-Parallel Data-Parallel

29

® ®

Data-parallel Applications

 Using distributed arrays

 Using spmd

 Using mpi based functionality

30

® ®

TOOLBOXES

BLOCKSETS

Distributed Array

Lives on the Cluster

Remotely Manipulate Array

from Desktop

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Client-side Distributed Arrays

data_parallel\distributed_example.m

31

® ®

Client-side Distributed Arrays and SPMD

 Client-side distributed arrays

 Class distributed

 Can be created and manipulated directly from the client.

 Simpler access to memory on labs

 Client-side visualization capabilities

 spmd

 Block of code executed on workers

 Worker specific commands

 Explicit communication between workers

 Mixture of parallel and serial code

32

® ®

spmd blocks (Data Parallel)

spmd

% single program across workers

end

 Mix data-parallel and serial code in the same function

 Run on a pool of MATLAB resources

 Single Program runs simultaneously across workers

 Distributed arrays, message-passing

 Multiple Data spread across multiple workers

 Data stays on workers

data_parallel\spmd_example.m

33

® ®

The Mechanics of spmd Blocks

Pool of MATLAB Workers

x = 1

spmd

y = x + 1

end

y
x  1

y = x + 1

x  1

y = x + 1 x  1

y = x + 1

x  1

y = x + 1

Worker

Worker

WorkerWorker

34

® ®

Composite Arrays

 Created from client

 Stored on workers

 Syntax similar to cell arrays

TOOLBOXES

BLOCKSETS

3

5

® ®

Composite Array in Memory

>> matlabpool open 4

>> x = Composite(4)

>> x{1} = 2

>> x{2} = [2, 3, 5]

>> x{3} = @sin

>> x{4} = tsobject()

TOOLBOXES

BLOCKSETS

0x0000

0x0008

0x0010

0x0000

0x0008

0x0010

0x0000

0x0008

0x0010

0x0000

0x0008

0x0010

0x0000

0x0008

0x0010

0x0018

0xFFFF

2

x 

2

3

5

@sin
tsobject

1

2

3

4

36

® ®

spmd

 single program, multiple data

 Unlike variables used in multiple parfor loops,

distributed arrays used in multiple spmd blocks retain

state

 Use M-Lint to diagnose spmd issues

37

® ®

Noisy Image – too large for a desktop

38

® ®

Distribute Data

39

® ®

Distribute Data

40

® ®

Pass Overlap Data

41

® ®

Pass Overlap Data

42

® ®

Pass Overlap Data

43

® ®

Apply Median Filter

44

® ®

Combine as Distributed Data

45

® ®

Combine as Distributed Data

4

6

® ®

MPI-Based Functions in

Parallel Computing Toolbox

Use when a high degree of control over parallel algorithm is required

 High-level abstractions of MPI functions

 labSendReceive, labBroadcast, and others

 Send, receive, and broadcast any data type in MATLAB

 Automatic bookkeeping

 Setup: communication, ranks, etc.

 Error detection: deadlocks and miscommunications

 Pluggable

 Use any MPI implementation that is binary-compatible with MPICH2

data_parallel\mpi_example.m

4

7

® ®

Summary for Interactive Functionality

 Client-side Distributed Arrays
 MATLAB array type across cluster

 Accessible from client

 SPMD … END
 Flow control from serial to parallel

 Fine Grained

 More control over distributed arrays

 Composite Arrays
 Generic data container across cluster

 Accessible from client

TOOLBOXES

BLOCKSETS

4

8

® ®

Migrating from Interactive to Scheduled

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

4

9

® ®

Interactive to Scheduled

 Interactive

 Great for prototyping

 Immediate access to MATLAB workers

 Scheduled

 Offloads work to other MATLAB workers (local or on a cluster)

 Access to more computing resources for improved performance

 Frees up local MATLAB session

5

0

® ®

Using Configurations

 Managing configurations

 Typically created by Sys Admins

 Label configurations based on the version of MATLAB

 E.g. linux_r2009a

 Import configurations generated by the Sys Admin

 Don’t modify them with two exceptions

 Setting the CaptureCommandWindowOutput to true for debugging

 Set the ClusterSize for the local scheduler to the number of cores

5

1

® ®

Creating and Submitting Jobs

Rather than using a shell script to submit a job to a cluster, we’ll write

our jobscript in MATLAB.

Find resource

Create job

Create task(s)

Submit job

Wait for completion

Check for errors

Get results

Destroy job

task_parallel\basic_jobscript.m

5

2

® ®

Example: Scheduling the ODE Sweep

task_parallel\jobscript_ode.m

5

3

® ®

Example: Retrieving Results

task_parallel\ode_return.m

5

4

® ®

Considerations When Using parfor

 parfor automatically quits on error

 parfor doesn’t provide intermediate results

5

5

® ®

Creating Jobs and Tasks

 Rather than submitting a single task
containing a parfor, the jobscript can be

used to create an array of tasks, each

calling a unit of work

5

6

® ®

Example: Using Multiple Tasks

task_parallel\jobscript_tasks.m

5

7

® ®

Example: Retrieving Task Results

task_parallel\tasks_return.m

5

8

® ®

Resolving Jobs & Tasks Issues

 Code running on your client machine ought to be able to

resolve functions on your path

 When submitting jobs to a cluster, those files need to

either be submitted as part of the job (FileDependencies)

or the folder needs to be accessible (PathDependencies)

 There is overhead when adding too many files to the job;

but setting path dependencies requires the Worker to be

able to reach the path

5

9

® ®

parfor

 Seamless integration to

user’s code

 Several for loops

throughout the code to

convert

 Automatic load balancing

Jobs and tasks

 All tasks run

 Query results after each

task is finished

parfor or jobs and tasks

Try parfor first. If it doesn’t apply to your application,

create jobs and tasks.

6

0

® ®

Example: Scheduling Estimating

What is the probability that a randomly dropped needle

will cross a grid line?

needles total

needles crossing

ba

lbal
balP

2)(2
),,(

(Buffon-Laplace Method) Simulate

random needles dropping, calculate P,

and get an estimate for .

l

(xo,yo)

b

a

data_parallel\jobscript_Pi.m

6

1

® ®

Summary for Scheduled Functionality

uses

matlabpool

function script pure task

parallel

pure data

parallel

parallel

and serial

batch   

matlabpool job   

jobs and tasks  

parallel job  

62

® ®

Recommendations

 Profile your code to search for bottlenecks

 Make use of M-Lint when coding parfor and spmd

 Beware of writing to files

 Avoid the use of global variables

 Run locally before moving to cluster



