
AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 1 of 9

AICT Computing Series Spring 2011 Workshop

Practical Python 2

charlene.nielsen@ualberta.ca

Monday, May 2nd, 2011

1:00 to 4:00 p.m.

ETLC 5-013

Through hands-on exercises, you will get a taste of some of the many standard library modules

while learning functions, error handling, and debugging in Python - an interpreted, object-

oriented, high-level programming language that is used in a wide variety of application domains

(www.python.org).

This is a continuation of the winter introductory workshop, but attendance at the previous

workshop is not required if you have any programming experience or read through the archived

materials (www.ualberta.ca/AICT/RESEARCH/Courses/archivecourses.html). For a more

engaging learning experience, you will use a variety of sample applications while developing

complete programs from start to finish.

“If you're using a programming language named after a sketch comedy troupe,

you had better have a sense of humor.” www.python.org

http://www.python.org/
http://www.ualberta.ca/AICT/RESEARCH/Courses/archivecourses.html
http://www.python.org/

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 2 of 9

Tasks

Computer access in ETLC 5-013
1. Click the middle button to choose session number 5 “WINDOWS XP”

2. Click the CHANGE SESSION button

3. Log-in with your CCID and password

(and click ACCEPT to the warning)

4. To access the internet: AUTHENTICATE using your CCID and password

Windows XP

1. In a web browser, download the following to C:\TEMP: bit.ly/pp2zip

2. Right-click the START button to choose EXPLORE

3. Navigate to the TEMP directory on the C drive

4. Extract all/Unzip pp2.zip in to C:\Temp\pp2

5. Open pp2_tasks_s2011.pdf (this document)

IDLE for Python in ETLC 5-013
1. Click START > PROGRAMS > ACTIVESTATE ACTIVEPYTHON 2.6 (32-bit) > IDLE

(PYTHON GUI)

2. Click HELP > IDLE HELP for a quick recap on the integrated development environment

application that installs with Python; close when finished reading

3. Click FILE > NEW WINDOW to open the file editor where you will type the workshop‟s

coding samples and scripts as shown below as plain text and screen captures from IDLE

4. Type a few meaningful comments at the top of your script file, similar to below (choose

your preference for commenting using the „#‟ character OR the triple-quoted string):

Date: yyyymmdd

By: your.name@ualberta.ca

Description: This script is helping me learn Python

5. Click FILE >>> SAVE as C:\Temp\pp2\scripts\scriptname.py (do NOT forget the .py)

6. Click RUN >>> RUN MODULE (or press the F5 key). Click OK to SAVE. View the results

in the interactive window, cross-referencing with the code in the script window.

7. You are strongly encouraged to access Python‟s built-in and online HELP.

http://bit.ly/pp2zip

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 3 of 9

Tip: Remember the useful trick of highlighting lines of your program and then using the

FORMAT menu to COMMENT OUT REGION and UNCOMMENT REGION. The INDENT

REGION and DEDENT REGION will come in handy when you start using loops and other

constructs requiring blocks of code.

Script samples
Start a new file for each of the scripts below. Make notes (comments in the code will do!) if you

think the instructor says something important during this hands-on demonstrations of practical

Python programming. Especially note the built-in modules highlighted from the standard library.

Various bits of the Python language are highlighted, along with the thought process of how to

end up with a simple program that does what you want. Regions of code have been commented

out. The instructor will guide you through typing via trail an error, along with tips and tricks, to

help you realize the complete program, plus with occasional variations. The samples alone are

not complete lessons. Tip: Zoom in on the text to see it better (small font optimizes page-fitting).

list_rename_files.py

list files of specific type in an input folder and rename

http://docs.python.org/release/2.6.6/library/glob.html
http://www.doughellmann.com/PyMOTW/glob

import glob

import os

variables

input_folder = 'C:\\Temp\\pp2\\files'

old_text = '20'

new_text = ''

get listing of only TIFF file types

file_type = '*.tif'

data_folder = input_folder + file_type

data_list = glob.glob(data_folder)

for each in data_list:

 print each

 new_file = each.replace(old_text, new_text)

 print new_file

 os.rename(each, new_file)

NOTE: The code samples

may not work as is! They are

meant to be used in guided

hands-on instruction.

http://docs.python.org/release/2.6.6/library/glob.html
http://www.doughellmann.com/PyMOTW/glob

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 4 of 9

descriptive_stats.py

calculate descriptive statistics

from math import sqrt

list of values

numbers = [235, 689, 568, 654, 639, 779, 301, 655, 299, 443]

calculate using built-in functions

minval = min(numbers)

maxval = max(numbers)

n = len(numbers)

summed = sum(numbers)

mean = sum(numbers) / n

##mean = sum(numbers) / float(n)

calculate standard deviation - should be 192.02343607

sumsq = 0

for number in numbers:

 diffsq = (number - mean) ** 2

print 'diffsq', diffsq

 # sum the difference of square

 sumsq += diffsq

print 'sumsq', sumsq

complete calculation

stdev = sqrt(sumsq / (n - 1))

print stdev

print 'Minimum:', minval

print 'Maximum:', maxval

print 'Sum:', summed

print 'Mean:', mean

##print 'Standard Deviation', stdev

random_coordinates.py

make random coordinates within rectangle extent and zip to tuples

http://docs.python.org/release/2.6.6/library/random.html

http://www.doughellmann.com/PyMOTW/random

import random

variables

number = 100

xmin = 170844

xmax = 865133

NOTE: The code samples

may not work as is! They are

meant to be used in guided

hands-on instruction.

http://docs.python.org/release/2.6.6/library/random.html
http://www.doughellmann.com/PyMOTW/random

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 5 of 9

ymin = 5425575

ymax = 6659344

initialize lists

xlist = []

ylist = []

generate values using a loop

for i in xrange(1,number):

 # demo this without random. module prefix

 x = randint(xmin, xmax)

 y = randint(ymin, ymax)

x = random.randint(xmin, xmax)

y = random.randint(ymin, ymax)

 xlist.append(x)

 ylist.append(y)

print xlist

print ylist

zip to tuple

##coords = zip(xlist, ylist)

##print coords

loop through tuple and print

##for each in coords:

print 'X:' + str(each[0])

print 'Y:' + str(each[1])

##print len(coords)

why aren't there 100? fix it in the code above

locations_calc.py

calculate new values while reading and writing text files

this example multiples longitude values for western hemisphere

http://docs.python.org/release/2.6.6/library/os.html

http://docs.python.org/release/2.6.6/library/os.path.html

import os

assign table to a variable

in_table = 'C:\\Temp\\pp2\\files\\locations.txt'

create new file for writing calculation results to

table_part = os.path.split(in_table)

print table_part

out_dir = table_part[0]

file_name = table_part[1]

print out_dir

NOTE: The code samples

may not work as is! They are

meant to be used in guided

hands-on instruction.

http://docs.python.org/release/2.6.6/library/os.html
http://docs.python.org/release/2.6.6/library/os.path.html

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 6 of 9

out_file = out_dir + os.path.sep + 'new_' + file_name

print out_file

open files

in_file = open(in_table, 'r')

new_file = open(out_file, 'w')

loop through each line

for line in in_file:

 # view each line as stored in the original table

print 'Original line:', line

 # split each line into its items

print 'Original items:', line.split(',')

remove newline

print 'Remove newline:', line.replace('\n','')

line = line.replace('\n','')

 # convert each line to list object

 columns = line.split(',')

 oid = columns[0]

 longitude = columns[1]

 latitude = columns[2]

print longitude

 # test if first value is a number and not a text heading

 if longitude[0].isdigit():

 # convert longitude to float for multiplication

 # and convert back to string for writing text

 new_long = str(float(longitude) * -1)

 else:

 # not a number, so no calculation

 new_long = longitude

 print new_long

 # concatenate expression to write to new file

 new_line = oid + ',' + new_long + ',' + latitude

new_line = oid + ',' + new_long + ',' + latitude + '\n'

 print new_line

 new_file.write(new_line)

close both files

in_file.close()

new_file.close()

demo newline and the 'w' versus 'a' mode for new_file

NOTE: The code samples

may not work as is! They are

meant to be used in guided

hands-on instruction.

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 7 of 9

Debugging, errors, and exceptions
Debugging is what is done to fix mistakes that break your code (or cause it to misbehave). The

two types of errors that may need to be debugged are syntax errors and exceptions.

Syntax errors, also known as parsing errors, repeat the offending line indicating where in the

line the error was detected. In the File window, choose RUN > CHECK MODULE (Alt+X) to try

and view any of these before actually running the script.

Exceptions are errors detected during execution/runtime and result in various messages. Use

try/except to attempt to perform an operation; if all goes well, great; if not, ask for forgiveness.

A debugger is a program that lets you step through your code one line at a time as Python

executes them, showing you how each affects your program. For full introductions to IDLE

debugging, with a GUI (DEBUG > DEBUGGER) or a module, see:

 http://inventwithpython.com/chapter7.html

 http://www.dreamincode.net/forums/topic/210537-python-debugging-part-1/

 http://pythonconquerstheuniverse.wordpress.com/2009/09/10/debugging-in-python/

Tip: Other IDEs may have friendlier debugging tools than IDLE (see the Resources below).

circle_area.py

calculate area of a circle from user input radius

try out various debugging/exception and find the intentional errors

http://docs.python.org/release/2.6.6/library/pdb.html?highlight=pdb

http://www.doughellmann.com/PyMOTW/pdb/

from math import pi

import pdb

pdb.set_trace()

radius = 10

##radius = raw_input('Type a number: ')

##radius = float(raw_input('Type a number: '))

flow control to test input data type

##if radius.isdigit()

print radius

area = pi * pow(float(radius), 2)

##else:

print 'Value entered is not a number'

area = pi * Radius ** 2

##area = pi * pow(radius, 2)

print 'Area of a circle with radius ' + radius + ' is ' + Area

NOTE: The code samples

may not work as is! They are

meant to be used in guided

hands-on instruction.

replace last line with the following

try:

 print 'Area of a circle with radius ' + \

 str(radius) + ' is ' + str(area)

except:

 print 'Cannot show area'

or relocate last line to inside flow control

http://inventwithpython.com/chapter7.html
http://www.dreamincode.net/forums/topic/210537-python-debugging-part-1/
http://pythonconquerstheuniverse.wordpress.com/2009/09/10/debugging-in-python/
http://docs.python.org/release/2.6.6/library/pdb.html?highlight=pdb
http://www.doughellmann.com/PyMOTW/pdb/

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 8 of 9

User-defined functions
A function is a series of statements which returns some value to a caller (it can also be passed

zero or more arguments for its use/execution). Built-in functions are objects that can be used by

all Python code without the need of an import statement. A user-defined function is a block of

organized, reusable code that is used to perform a single related action that you create. They

are similar to procedures, subroutines, and functions in other programming languages, but may

or may not return a value. The generic syntax requires the keyword def to define the function:

 def functionname(parameters):

 """function_docstring"""

 function_suite

 return [expression]

For more practice with functions, start at chapter 18 of http://learnpythonthehardway.org.

constant_value_field.py

preliminary coding to add a constant value field to a database table

function to test if number

def is_float(s):

 """ return Boolean value after trying convert string to float """

 try:

 float(s)

 return True

 except:

 return False

get user input

field_name = raw_input('Type the new field name: ')

constant_value = raw_input('Type a constant value: ')

test user input

if is_float(constant_value):

 constant_field_type = 'DOUBLE'

else:

 # assign defaults

 constant_field_type = 'TEXT'

this is where you would add and calculate the new field

print 'The new field %s has the data type %s' % (field_name,

constant_field_type)

on your own: insert code above to test that the field_name

starts with a letter and only contains alphanumeric characters

homework: combine this with the locations_calc.py code

ignore the constant_field_type when writing to new_file

NOTE: The code samples

may not work as is! They are

meant to be used in guided

hands-on instruction.

http://learnpythonthehardway.org/

AICT – Practical Python 2 Spring 2011

ccn@ualberta.ca Page 9 of 9

Really useful resources

http://www.python.org/dev/peps/pep-0008/

http://docs.python.org/faq/index.html

http://docs.python.org/release/2.6.6/library

http://docs.python.org/release/2.6.6/library/functions.html

http://docs.python.org/release/2.6.6/reference/compound_stmts.html

http://docs.python.org/release/2.6.6/tutorial/errors.html

http://docs.python.org/release/2.6.6/library/pdb.html?highlight=pdb

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

...and don‟t forget all the excellent e-resources in the “Practical Python Programming” winter

workshop archives.

“Python Foot” graphic by David Day

http://www.python.org/dev/peps/pep-0008/
http://docs.python.org/faq/index.html
http://docs.python.org/release/2.6.6/library
http://docs.python.org/release/2.6.6/library/functions.html
http://docs.python.org/release/2.6.6/reference/compound_stmts.html
http://docs.python.org/release/2.6.6/tutorial/errors.html
http://docs.python.org/release/2.6.6/library/pdb.html?highlight=pdb
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://dday.com/

