
Practical Python Programming Winter 2011

ccn@ualberta.ca 1

AICT Computing Series Winter 2011 Workshopp g p

Practical Python Programming
charlene.nielsen@ualberta.ca
Thursday, February 24th, 2011
9:00 a.m. to 12:00 noon
ETLC 5 013ETLC 5-013

Practical Python Programming

ETLC 5-013 Computer Access

1. Click the middle button to choose
session number 5 “WINDOWS XP”

2. Click the CHANGE SESSION button

3. Log-in with your CCID and password
(and click ACCEPT to the warning)(and click ACCEPT to the warning)

4. To access the internet: AUTHENTICATE
using your CCID and password

Practical Python Programming Winter 2011

ccn@ualberta.ca 2

Practical Python Programming

Windows XP

1 Right-click the START button to choose EXPLORE1. Right click the START button to choose EXPLORE

2. Navigate to the TEMP directory on the C drive

3. In a web browser, download the following to C:\TEMP:
http://tinyurl.com/ppp-zip

4 Extract all/Unzip ppp zip in to C:\Temp\ppp4. Extract all/Unzip ppp.zip in to C:\Temp\ppp

5. Open ppp1_tasks_w2011.pdf, and then minimize for
future use

Outline

• Who when what where why how?Who, when, what, where, why, how?
• Easy environments
• Programming primer
• Beverage break ~ 10:30 a.m.
• Coding conventions• Coding conventions
• Fussing with the flow
• Excellent e-resources

Practical Python Programming Winter 2011

ccn@ualberta.ca 3

Who am I?
Charlene Nielsen

@ lb tccn@ualberta.ca

GIS Analyst in Biological Sciences
http://www.biology.ualberta.ca/facilities/gis

Who is this workshop for?

• You, if you:
– Know how to use a computer and the web
– Have never programmed before but have a

strong desire to learn how

– Are willing to type a lot to make the
information stick (no copy paste allowed)information stick (no copy paste allowed)

– Are an experienced programmer and want to
play with a new language

Practical Python Programming Winter 2011

ccn@ualberta.ca 4

Who uses it?

• Web Development

• Graphics

• Financial

• Science

http://wiki.python.org/moin/OrganizationsUsingPython

Who uses it?

• Electronic Design Automation

• Software Development

• Education

• Business Software

• Government

http://wiki.python.org/moin/OrganizationsUsingPython

Practical Python Programming Winter 2011

ccn@ualberta.ca 5

Who is responsible for Python?
• Created by Guido van Rossum

– born 31 Jan 1956 (Netherlands)born 31 Jan 1956 (Netherlands)
– currently works at Google (since 2005)

• Actively maintained by worldwide users (including van Rossum)

When?
• 1989 "hobby" programming project

– interpreter for a new scripting language descendant ofinterpreter for a new scripting language descendant of
ABC that would appeal to Unix/C hackers

– needed a name that was short, unique, and slightly
mysterious – so was named Python as a working title

• 1991 code first published (version 0.9.0)
• 2001 the Python Software Foundation was formed

More history:
http://docs.python.org/release/2.6.6/license.html
http://en.wikipedia.org/wiki/History_of_Python

Practical Python Programming Winter 2011

ccn@ualberta.ca 6

When to (not) use it?

• PRO: Suitable for everyday tasks, therefore
i i i i th t f timinimizing the amount of time a

programmer spends on a project

• CON: Often less efficient than languages
such as Java C and C++ therefore notsuch as Java, C, and C++, therefore, not
good when creating a new operating
system

What is it?

• A remarkably powerful, dynamic, object-oriented,
interpreted, high-level programming language
that is used in a wide variety of application domains

• Named after the comedy troupe: Monty Python

Practical Python Programming Winter 2011

ccn@ualberta.ca 7

What release: 2 or 3?
• “Python 2.x is the status quo,

Python 3.x is the shiny new thing.”

I’m the
tried

and true
blue #2!

• 2.7 is the last major release for 2.x,
with statement of extended support

• 3.1 is the intended future of the “cleaned up” language,
with less regard for backwards compatibility

• A lot of third party software doesn't work on 3.x yet…

• “Well written 2.x code will actually be a lot like 3.x code” I’m the
clean

• Handy tools for compatibility:
– http://wiki.python.org/moin/2to3
– http://wiki.python.org/moin/3to2

and
shiny #3!

http://wiki.python.org/moin/Python2orPython3

What can it do?
Run Web sites Build test suites for

C or Java code

And
more!

Write GUI
interfaces

Control number-
crunching code on

Make a commercial

Process large
XML data sets

C or Java code

http://www.headfirstlabs.com/books/hfpython/
Image from “Head First Python” book by Paul Berry

supercomputers Make a commercial
application scriptable

by embedding the
Python interpreter

inside it

Practical Python Programming Winter 2011

ccn@ualberta.ca 8

Where can it be found?
• www.python.org Follow the

easy online

• www.activestate.com

• Automatically with certain operating systems
(e.g. Mac and Linux)

installation
instructions!

• Installed alongside software applications that
incorporate its scripting functionality
(e.g. ESRI ArcGIS)

Where can it be used?
• All major operating systems

Windows– Windows

– Linux/Unix

– OS/2

– Mac

– Amiga

And operating systems on mobile devices!

Practical Python Programming Winter 2011

ccn@ualberta.ca 9

Why use it?

• Simplicity
and ease ofand ease of
understanding
– Programs look neat

and clean
– Has few unnecessary

symbols
– StraightforwardStraightforward

English names instead
of the cryptic syntax
common in other
languages

Note: ‘import antigravity’ only works in version 3.x, print statement only in 2.x
http://xkcd.com/353/

Why use it?

• Programmability
Wide range of readymade libraries that can be (freely!) used in– Wide range of readymade libraries that can be (freely!) used in
your own programs; i.e. “batteries included”

– Supports, but doesn't force, object-oriented programming (OOP)
– Integration with other languages (e.g. Java, C)

“Python Foot” graphic by David Day

Practical Python Programming Winter 2011

ccn@ualberta.ca 10

Why use it?

• Free
Doesn’t cost freely usable and– Doesn t cost – freely usable and
distributable – even for commercial use

– Open source code
– Sizable community of developers with

online support groups

http://www.pycon.org

How can it be used?
• Scripting

– ‘gluing’ together commands for other software applications

• Programming
– text processing, web site development, email, scientific computing

http://www.devsource.com/c/a/Languages/More-Than-Five-Things-You-Didnt-Know-You-
Could-Do-With-Python/

• Python does COM
• Python does .NET
• Python does Java better than Java
• Python is high-performance

P thon talks to hard are• Python talks to hardware

• Education
– MIT and other institutions use Python as the programming

language in their introductory computer science courses

Practical Python Programming Winter 2011

ccn@ualberta.ca 11

How can it be learned?

• Official Python tutorial
http://docs python org/release/2 6 6/tutorial/index htmlhttp://docs.python.org/release/2.6.6/tutorial/index.html

• Online resources, including “free” e-books
through UofA’s Libraries (listed at the end)

• Hands-on now!

Easy environments
• Command line

– The interpreterp

• IDE (IDLE):
Integrated
DeveLopment
Environment
– Interactive window
– Script window– Script window

• Other software
(not used in this workshop)

Practical Python Programming Winter 2011

ccn@ualberta.ca 12

The Python Interpreter
We’re going to skip the command line, and go on to…

IDLE for Python in ETLC 5-013
Click START >>> PROGRAMS

>>> ACTIVESTATE ACTIVEPYTHON 2.6 (32-bit) >>> IDLE (PYTHON GUI)

Practical Python Programming Winter 2011

ccn@ualberta.ca 13

IDLE: Interactive window

http://docs.python.org/library/idle.html
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

Interactive window menu: File

Create a new editing window

Open an existing file

Open an existing module
(searches sys.path)
Sh l d th dOpen an existing file

Open a list of recent files
Show classes and methods
in current file
Show sys.path directories,
modules, classes and
methodsSave current window to the

associated file (unsaved
windows have a * before

and after the window title) Save current window to new
file, which becomes the
associated fileSave current window to

Close all windows, quit
(asks to save if unsaved)

Save current window to
different file without

changing the associated file
Print the current window

Close current window (asks
to save if unsaved)

Practical Python Programming Winter 2011

ccn@ualberta.ca 14

Interactive window menu: Edit
Undo last change to current

window (A maximum of
1000 changes may be

Redo last undone change toundone) Redo last undone change to
current window

Copy a selection into
system wide clipboard, then

delete the selection

Copy selection into system
wide clipboard

Insert system wide
clipboard into window

Select the entire contents of
the edit buffer

Open a search dialog box p g
with many options

Open a search and replace
dialog box

Ask for a line number and
show that line

more…

Interactive window menu: Edit
continued

Repeat last searchSearch for the string in the
selection

Open a search dialog boxOpen a search dialog box
for searching files

Open a small window with
function param hints

Open a scroll window
allowing selection keywords
and attributes

Highlight the surrounding
parenthesis

Expand the word you have
typed to match another
word in the same buffer;
repeat to get a different
expansion

Practical Python Programming Winter 2011

ccn@ualberta.ca 15

Interactive window menu: Other
Scroll the shell window to the last restart

Restart the interpreter with a fresh environment

Open stack viewer on
traceback

Look around the insert point for a
filename and linenumber, open

the file, and show the line
Run commands in the shell
under the debugger

Show the stack traceback of the
last exception

Restart the interpreter with a fresh environment

Toggles the window between configured size and
maximum height.

The rest of this menu lists the names of all open
windows; select one to bring it to the foreground

(deiconifying it if necessary).

Shell and Debug menus are not available in the script window

Interactive window menu: GTK*
Open a configuration dialog. Fonts, indentation,
keybindings, and color themes may be altered. Startup

f SPreferences may be set, and Additional Help Sources
can be specified. On MacOS X this menu is not
present, use menu 'IDLE > Preferences...' instead.

Version, copyright, license, credits
Display summary file on
all menu itemsAccess local Python documentation, if installed.

*GTK = Good To Know!

(Additional Help
Sources may be added
here using Options >
Configure IDLE…)

y
Otherwise, access www.python.org.

Practical Python Programming Winter 2011

ccn@ualberta.ca 16

Now try this…
• Click Help > IDLE Help

– Close when finished
reading

• Click Options > Configure
IDLE
– Examine each tab and

modify as needed
– E.g. change font g g

(Fonts/Tabs tab)
– E.g. add custom web/file

help link/path (General tab
and click Add button)

Programming primer

• Program
– A set of instructions or recipe that tells the

computer what you want it to do

Practical Python Programming Winter 2011

ccn@ualberta.ca 17

Programming primer

• A Python program is divided into lines
– Each line physically ends before a newline
– Lines that are blank (contain only spaces, tabs, formfeeds and

possibly a comment) are ignored
– Breaking up statements on separate lines will break

your program!
thesunshines = True

itsraining =
False

Programming primer

• Indentation and whitespace required
Leading whitespace (i) t th b i i f– Leading whitespace (i.e. spaces) at the beginning of a
logical line is used to compute the indentation level of the line,
which in turn is used to determine the grouping of statements

– Trailing whitespace is ignored
– All lines you want grouped together must be indented

identically!
thesunshines = True
while thesunshines:

print “Skip work and go to the beach”
thesunshines = False

{(No
BEGIN/END
or braces)}

Practical Python Programming Winter 2011

ccn@ualberta.ca 18

Programming primer

• Comments
Helps explain what the code is doing– Helps explain what the code is doing

– Ignored when executed
– Two ways to indicate comments:

type comment here
“““ type comment here ”””

• Command prompts (interactive mode only)

>>>
...

Now try this…
• Type the following in the interactive window:

>>> import this

>>> help()

>>> import

>>> topics

>>> NUMBERS

Do NOT type the >>>

>>> strings # note the lower case

• Type quit or press Ctrl-C to exit the help system

Practical Python Programming Winter 2011

ccn@ualberta.ca 19

Now try this…
• Type the following in the interactive window:

>>> help(keywords) # now retype with quotes around ‘keywords’

>>> help(‘print’)

>>> print ‘what is a blue moon?’

>>> abluemoon = ‘second to last full moon in a four-moon season’

>>> print abluemoon

>>> f i bl>>> for once in abluemoon:
print once # this is looping, we’ll learn about ir later

• Type Alt-P a couple of times (and try Alt-N)

Do NOT type the >>>

Building blocks
• Computer programs modules statements expressions

expressionsstatementsmodulescomputer
programs

• Difference between a statement and an expression:
– Expression is something
– Statement does something

(or, rather, tells the computer to do something; e.g. print or assignment)

• Expressions consist of:
Literal values– Literal values

– Variables
– Operators
– Parentheses (to override the built-in precedence system)
– And some other things…

http://docs.python.org/reference/lexical_analysis.html

Practical Python Programming Winter 2011

ccn@ualberta.ca 20

Literals

• Notations for constant values of some
b ilt i t (i th t ff t di tl)built-in types (i.e. the stuff you type directly)
– Numeric = plain integers, long integers,

floating point numbers, and imaginary numbers

– Strings = text
enclosed in ‘single quotes’ or “double quotes”

help(‘STRINGS')
help(‘NUMBERS’)

Variables
• A name that represents or refers to a value

(i.e. the stuff you want stored for various uses)(i.e. the stuff you want stored for various uses)
– Dynamic – no need to define the type up front

– Created through an assignment statement that gives them
values using the ‘=’ operator

– If you don’t have an assignment (i.e. a name to the left of the ‘=’)
then Python stores it in the default result variable ‘_’
(note: type ‘_’ at the command prompt to view current value)

“Programmers use these variable names to make their code read more
like English, and because they have lousy memories. If they didn’t use
good names for things in their software, they’d get lost when they tried

to read their code again.”
(Learn Python the Hard Way)

Practical Python Programming Winter 2011

ccn@ualberta.ca 21

Operators

• Tokens that work with or operate on values
• Includes:

– Arithmetic
– Assignment
– Comparison
– Bitwise
– Logical
– Membership
– Identity

(Note: The smaller-font ones are not included in the next set of slides; look them up in the help!)

help('OPERATORS')
http://www.tutorialspoint.com/python/python_basic_operators.htm

Operators: Arithmetic

+ Add (Note: Concatenation when used with strings)

- Subtract

* Multiply (Note: Repetition when used with strings)

** Exponential (power) calculation

/ Divide

% Modulus – return remainder from division

// Floor Division – return quotient from division

Practical Python Programming Winter 2011

ccn@ualberta.ca 22

Operators: Comparison

== Equal to*

!= Not equal to (also <>)

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

*Remember that a single ‘=‘ sign is the assignment operator!

Operators: Assignment

= Simple assignment operator*
(assigns values from right side operands to left side operand)

+= Add AND assignment operator
(add right operand to the left operand and assign the result to left operand)

-= Subtract AND assignment operator
(subtract right operand from the left operand and assign the result to left operand)

*= Multiply AND assignment operator
(multiply right operand with the left operand and assign the result to left operand)

/= Divide AND assignment operator
(divide left operand with the right operand and assign the result to left operand)/ (divide left operand with the right operand and assign the result to left operand)

*Remember that a double ‘==‘ sign is the equality operator!

Practical Python Programming Winter 2011

ccn@ualberta.ca 23

Keywords

• A reserved word or identifier that has a particular
meaning to the programming languagemeaning to the programming language

• They must be spelled exactly as typed here:
and
as
assert
break

elif
else
except
exec

if
import
in
is

print
raise
return
try

help(‘keywords')
http://docs.python.org/reference/lexical_analysis.html#keywords

class
continue
def
del

finally
for
from
global

lambda
not
or
pass

y
while
with
yield

Now try this…
• Type the following in the interactive window:

>>> 1 + 2 + 3

>>> _

>>> _ - 4

>>> a = 1

>>> b, c = 2, 3

Case is important!
A is NOT the same as a

>>> A + b * c # then type a + b * c

>>> ‘stuff’

>>> _

Do NOT type the >>>

Practical Python Programming Winter 2011

ccn@ualberta.ca 24

Now try this…

• Type the following in the interactive window:

>>> # calculator expressions

>>> # commenting and docstrings

>>> # print statements

>>> # sequences

Samples demonstrated
and provided in

the PDF document

• IDLE is well-suited for testing out bits of code to
see how it works!

IDLE: Script window
• From the menu of the interactive (Python Shell) window,

click File >>> New Windowclick File >>> New Window
– A new blank window (a.k.a. file editor) is used to type our

programs in

Practical Python Programming Winter 2011

ccn@ualberta.ca 25

Script window menu

Open a pane at the top of the edit window which shows
the block context of the section of code which is
scrolling off the top or the window

Open or wake up the Python shell window

R h k h d l

Shell and Debug menus are not available in the script window
But, all the previously shown ones are: File, Edit, Windows, Help!

Run menu is not available in the interactive window

Run a syntax check on the module

Execute the current file in the __main__ namespace

Script window menu: Format

Shift selected lines right 4 spaces

Shift selected lines left 4 spaces

Insert ## in front of selected lines

Remove leading # or ## from selected lines

Turn *all* tabs into the right number of spaces

Open dialog to change indent widthp g g

Reformat the current blank-line-separated paragraph

Format menu is not available in the interactive window

Practical Python Programming Winter 2011

ccn@ualberta.ca 26

A script

• A text file containing the statements that
comprise a Python programcomprise a Python program

• Reusable, reusable, reusable – once created,
the script can be executed over and over without
having to retype it each time

• Any file editor (that saves as plain ASCII) can be used,
but name the file with a .py extension

• But don’t forget about interactive mode completely, it
makes an excellent testing ground

Coding conventions
• Style Guide for Python Code

http://www python org/dev/peps/pep-0008/http://www.python.org/dev/peps/pep 0008/
– 4 spaces per indentation (no tabs ever)
– Maximum line length of 79 characters
– Always import modules after initial comments or docstrings and

import them separately (i.e. don’t scatter them throughout your code)
– Name:

• modules with lowercase
• classes with CapWords
• functions with lower case with underscoresfunctions with lower_case_with_underscores
• constants with UPPERCASE (and possibly “_”)

– Use blank lines to separate groups of related code
– Surround operators with single space on either side
– Avoid extraneous whitespace in other situations
– Consistency! You really should read through PEP 8

Practical Python Programming Winter 2011

ccn@ualberta.ca 27

Now try this…
• Type some of the previous statements you`ve already

tried in to the script windowtried in to the script window

S ith i f l d py t i t

Samples demonstrated
and provided in

the PDF document

• Save with a meaningful name and a .py extension to
your working directory

• Optionally, click Run >>> Check Module

• Click Run >>> Run Module (or the F5 key)

Fussing with the flow
• Control the behaviour of a script by testing conditions

and looping through valuesand looping through values
• Flow control statements (similar to other programming languages)

specify how the program is executed
– if
– while
– for

:
for

– Also try and with (but not covered in this workshop)

• Keyword statement (typically) followed by a colon and
an indented block

http://docs.python.org/release/2.6.6/reference/compound_stmts.html

Practical Python Programming Winter 2011

ccn@ualberta.ca 28

if
• The if statement is used for conditional execution, a.k.a.

testing values and making decisions

• Details: lets you perform an action (another statement or more) if
a given condition is true; if the condition is false, then the
block is not executed

• Remember: when testing equality use == (and not =)

E t di th t ti• Extending the testing:
– elif allows you to check multiple expressions for truth value and

execute a block of code as soon as the first one of the conditions
evaluates to true (all following elif expressions are ignored)

– else is a catch-all in case previous condition(s) not met

http://docs.python.org/release/2.6.6/reference/compound_stmts.html

if
• Generic syntax:

if expression: Most basicif expression:
statement(s)

elif expression:
statement(s)

else:
statement(s)

Most basic
minimum coding

()

• Can be abbreviated as a conditional statement:
x = true_value if condition else false_value

http://docs.python.org/release/2.6.6/reference/compound_stmts.html

Practical Python Programming Winter 2011

ccn@ualberta.ca 29

while
• The while statement is used for repeated execution as

long as an expression is trueg p

• Details: keeps executing (another statement or more) until the
condition becomes false

• Remember: to code a finite loop; i.e. prevent the
possibility that this condition never resolves to a false
value (unless an infinite loop is actually desired)value (unless an infinite loop is actually desired)

• Generic syntax:
while expression:

statement(s)

http://docs.python.org/release/2.6.6/reference/compound_stmts.html

for
• The for statement is used to iterate over the elements

of a sequence (such as a string, tuple or list) or other iterableq (g, p)
object

• Details: causes a section of a program to be repeated a
certain number of times by iterating (i.e. counting each)

• Remember: this can loop through list-like objects and/or
numeric rangesnumeric ranges

• Generic syntax:
for iterating_var in sequence:

statements(s)

http://docs.python.org/release/2.6.6/reference/compound_stmts.html

Practical Python Programming Winter 2011

ccn@ualberta.ca 30

Now try this…

• Type the following in the script window:

>>> # if

>>> # X if C else Y

>>> # while

>>> # for

Samples demonstrated
and provided in

the PDF document

Built-in functions

• A series of statements
hi h t lwhich returns some value

to a caller
(it can also be passed zero or more
arguments for its use/execution)

• Objects that can be used
b ll P th d ith tby all Python code without
the need of an import
statement

dir(__builtins__)
http://docs.python.org/release/2.6.6/library/functions.html

Practical Python Programming Winter 2011

ccn@ualberta.ca 31

Built-in functions

Some of the tools that are always available to use:

abs(x)
bin(x)
cmp(x, y)
complex([real[, imag]])
dict([arg])
dir([object])
divmod(a b)

globals()
help([object])
hex(x)
id(object)
input([prompt])
int([x[, base]])
isinstance(object classinfo)divmod(a, b)

enumerate(sequence[, start=0])
eval(expression[, globals[, locals]])
file(filename[, mode[, bufsize]])
float([x])
format(value[, format_spec])

isinstance(object, classinfo)
iter(o[, sentinel])
len(s)
list([iterable])
locals()
long([x[, base]])

See http://docs.python.org/release/2.6.6/library/functions.html for complete listing

Built-in functions

More selected tools:

map(function, iterable, ...)
max(iterable[, args...][, key])
min(iterable[, args...][, key])
oct(x)
open(filename[, mode[, bufsize]])
pow(x, y[, z])
range([start] stop[step])

set([iterable])
sorted(iterable[, cmp[, key[, reverse]]])
str([object])
sum(iterable[, start])
tuple([iterable])
type(object)
type(name bases dict)range([start], stop[, step])

raw_input([prompt])
reversed(seq)
round(x[, n])

type(name, bases, dict)
vars([object])
xrange([start], stop[, step])
zip([iterable, ...])

See http://docs.python.org/release/2.6.6/library/functions.html for complete listing

Practical Python Programming Winter 2011

ccn@ualberta.ca 32

User-defined functions
• A block of organized, reusable code that is used

to perform a single related action, that you createp g , y

• Similar to procedures, subroutines, and functions
in other programming languages, but may or may
not return a value

• Generic syntax:Generic syntax:
def functionname(parameters):

"""function_docstring"""
function_suite
return [expression]

Required keyword: def
defines the function

Modules

• Basically, subprograms that define things,
e g functions classes variablese.g. functions, classes, variables

• Built-in (as opposed to user-defined) modules
are also called standard libraries

http://docs.python.org/release/2.6.6/library
http://www.doughellmann.com/PyMOTW/

Practical Python Programming Winter 2011

ccn@ualberta.ca 33

Modules
• Different ways to grab these extra tools:

1 import <module name>1. import <module name>
• Requires module name as prefix to tools

e.g. import random
randvalue = random.random() * 100

2. from <module name> import <function>
• Reduces typing for commonly used tools

e g from random import randome.g. from random import random
randvalue = random() * 100

3. from <module name> import *
(this way is not advised because it causes clutter)

The Cheese Shop

• The Python Package Index is
one-stop ‘shopping’ for all registered
module packages:

http://pypi.python.org/pypi
• Searchable! Now then,

some cheese
please myplease, my
good man.

Certainly, sir.
What would

you like?

Practical Python Programming Winter 2011

ccn@ualberta.ca 34

Some final notes
• As with all things and in Python, it’s

Easier to Ask ForgivenessEasier to Ask Forgiveness
than Permission

• I.e. try and perform an operation; if all goes well,
great; if not, ask for forgiveness

• Although, not demonstrated in this workshop, this is
error handling and is done with try/except

• The FAQ is a worthwhile read:
http://docs.python.org/faq/index.html

Five tips for Python
1. Don't work too hard – let Python do the work for you by

using the stuff built in to its standard library

2. Don't write a loop when a comprehension will do –
built-in syntax for transforming one data structure (lists,
dictionaries) into another version of itself without resorting to
iteration

3. Learn as you go, not all at once, and learn constantly
(remember, concepts are the important things)

4 IDLE i f d f i k j b4. IDLE is often good for quick jobs (and has some useful
tools)

5. Don't reinvent the wheel – check the Python Package Index
(PyPI) first

http://answers.oreilly.com/topic/2227-how-to-tackle-python-head-first/

Practical Python Programming Winter 2011

ccn@ualberta.ca 35

Skeleton script suggestion

• Set up a generic_code.py (name it what you want)

U /d i h i di h• Use comments/docstring at the top to indicate the
filename, date(s), your name, optional contact info, and
details about what the script requires and does

• Type out the basic structure of your common coding
needs; including import <commonly used module(s)>

• Open the file when you’re ready to start a new program,
simply saving as a new appropriate name before
modifying

So, are you now a fledgling pythoneer?
OR

Do you feel like you’ve found the ‘holy grail’
f i l ?of programming languages?

Practical Python Programming Winter 2011

ccn@ualberta.ca 36

PyEd, anyone?

Future Python group activities
• More AICT Workshops with Python

• Software Carpentry:
http://software-carpentry.org

• MIT Intro to Computer Science Programming:
http://academicearth.org/courses/introduction-to-

t i d icomputer-science-and-programming

• Read the related article on the importance of programming skills:
http://www.python.org/doc/essays/cp4e.html

http://www.python.org/community/sigs/current/edu-sig/

Practical Python Programming Winter 2011

ccn@ualberta.ca 37

E-resources
(online links to software, documentation, free books, tutorials, sample code, and articles)

• http://www.python.org/
• http://hetland.org/writing/instant-python.html
• http://rgruet.free.fr/PQR26/PQR2.6.html
• http://diveintopython.org/
• http://www.headfirstlabs.com/books/hfpython/
• http://learnpythonthehardway.org/
• http://greenteapress.com/thinkpython/
• http://homepage.mac.com/s_lott/books/python.html
• http://www.tutorialspoint.com/python/
• http://www.developer.com/lang/other/article.php/3624681/Python-Tutorial-Index-Page.htm
• http://www.swaroopch.com/notes/Python
• http://www.korokithakis.net/tutorials/python
• http://oreilly.com/python/
• http://en.wikipedia.org/wiki/Comparison_of_programming_languages
• http://code.activestate.com/recipes/langs/python/
• http://pypi.python.org/pypi
• http://www.python.org/doc/humor/

UofA e-books
(subscription is accessible through an on-campus computer with a UofA IP address)

http://www.springerlink.com/
• Pro Python, Marty Alchin

P th P i F d t l K t D L• Python Programming Fundamentals, Kent D. Lee

• A Primer on Scientific Programming with Python, Hans Petter Langtangen

• Python Scripting for Computational Science, Hans Petter Langtangen

• Beginning Python Visualization: Crafting Visual Transformation Scripts, Shai Vaingast

• Dive Into Python, Mark Pilgrim

• Foundations of Agile Python Development, Jeff Younker

• Beginning Python: From Novice to Professional, Magnus Lie Hetland

http://site.ebrary.com/lib/ualberta/home.action
• Python Programming for the Absolute Beginner, Michael Dawson

• Gray Hat Python: Python Programming for Hackers and Reverse Engineers, Justin Seitz

• Python: Create - Modify – Reuse, James O. Knowlton

• Python Power!: The Comprehensive Guide, Matt Telles

Most recently published (and latest editions) listed from top to bottom

Practical Python Programming Winter 2011

ccn@ualberta.ca 38

UofA e-books
(subscription is accessible through an on-campus computer with a UofA IP address)

http://proquest.safaribooksonline.com/
• Programming Python, Mark Lutz

P th Al ith M t i B i Al ith i th P th L M Li H tl d• Python Algorithms: Mastering Basic Algorithms in the Python Language, Magnus Lie Hetland

• Head First Python, Paul Barry

• Python Testing, Daniel Arbuckle

• The Quick Python Book, Vern Ceder

• Python Programming for the Absolute Beginner, Michael Dawson

• Python Pocket Reference, Mark Lutz

• Learning Python, Mark Lutz

• Python Essential Reference, David M. Beazley

• Python: Visual QuickStart Guide, Toby Donaldson

E t P th P i L b t ti t d i i di d di t ib ti• Expert Python Programming: Learn best practices to designing, coding, and distributing your
Python software, Tarek Ziadé

• Python Programming in Context, Bradley Miller and David Ranum

• Python Power!: The Comprehensive Guide, Matt Telles

• Python Phrasebook: Essential Code and Commands, Brad Dayley

• Core Python Programming, Wesley J. Chun

• Python in a Nutshell, Alex Martelli

• Python Cookbook, Alex Martelli, Anna Ravenscroft, and David Ascher

