AICT - Practical Python Programming Winter 2011

AICT Computing Series Winter 2011 Workshop

Practical Python Programming

charlene.nielsen@ualberta.ca
Thursday, February 24", 2011
9:00 a.m. to 12:00 noon

ETLC 5-013

@ python’

This is an informal introduction to the basic concepts and features of Python - an interpreted,
object-oriented, high-level programming language that is used in a wide variety of application
domains (www.python.org) - but really it is "a programming language that knows how to stay out
of your way when you write your programs. It enables you to implement the functionality you
want without any hassle, and lets you write programs that are clear and readable" (Magnus Lie
Hetland). Python is:

* powerful... and fast

e plays well with others

e runs everywhere

» isfriendly... and easy to learn
e isOpen

Through hands-on exercises, you will learn basic calculations, work with coordinate data, and
get a taste of just some of the many library modules.

“If you're using a programming language named after a sketch comedy troupe,
you had better have a sense of humor.” www.python.org

ccn@ualberta.ca Page 1 of 11

AICT — Practical Python Programming Winter 2011

Tasks

The workshop’s coding samples and scripts are shown below as plain text and screen captures
from IDLE, so you know exactly what you should be typing in yourself. Please see the
companion slides for more information.

Note: This document is named ppp1_tasks_w?2011.pdf and the companion slides are named
pppl_slides w2011.pdf. The companion slides have information on the following background
information, programming concepts, and tutorial theory:

Who, when, what, where, why, how?
Easy environments

Programming primer

Coding conventions

Fussing with the flow

Excellent e-resources

R

Environments and Primer
Tip: Make note of what happens with each of the lines of code.

The following text — except do NOT type the ‘>>>’ prompt — can be typed directly in to the
interactive window (also called the Python Shell window):

>>> import this

>>> help()

>>> Import

>>> topics

>>> NUMBERS

>>> strings # note the lower case

>>> quit

>>> help(keywords) # now retype with quotes around “keywords®
>>> help("print®)

>>> print “"what i1s a blue moon?*

>>> abluemoon = "second to last full moon in a four-moon season*®
>>> print abluemoon

>>> for once in abluemoon:
print once # we”’ll learn more about looping later

ccn@ualberta.ca Page 2 of 11

AICT — Practical Python Programming Winter 2011

Tip: Type Alt-P a couple of times (and try Alt-N)

>>> 1+ 2 + 3

>>>

>>> - 4

>>> g = 1

>>> b, c =2, 3 # we”ll do more variables later
>>> A+ b *cC # then type a + b * c

>>> "stuff”

>>>

Note: The default result variable *_" is available only in the interactive window.
>>> # calculator expressions

>>> 1/ 2

>>> 1/ 2.0

>>> 1.0/ 2

>>> -3 F* D

>>> (=3) ** 2

>>> "p* + "p" + "p°

>>> "p* * 3

>>> "p* + 3

>>> "Ha, " * 5 + "Hal!*

Note: Try a few calculations on your own.

>>> # commenting and docstrings

>>> # dear interpreter, please ignore all comments, thank you

>>> """ Geography is an important antidote to the "infantile”
habit of thinking the world is a laboratory in which we can
carry out all kinds of experiments, or a huge rubbish heap where
we can get rid of all our trash. """

ccn@ualberta.ca Page 3 of 11

AICT — Practical Python Programming Winter 2011

>>>
and
and
and
and
put
and

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

" Type something
type some more

more

then some more again

maybe

yourself out of your misery
finish "

print

print statements

print
print
print
print
print

print

*And now for something completely different!"
*And now for something\ncompletely different!”
"Green® + “eggs® + "and® + “ham-®

"Green®, "eggs”, "and", "ham"

"Today 1s", 24, “February®, 2011

"This is my pretend long string \

that 1 just don"t want to fit on one line"”

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

print
print
print
print
print

print

"Let"s go!"

"Let\"s go!"

"She said, \"Hello\""
"C:\new folder-*

"C:\temp-*

"C:\\newfolder®, "C:\\temp"

sequences (lists and strings)

mylist

= [123, 456, "seven ate nine"]

mylist[O]

mylist[1]

mylist[2]

mylist[-1]

ccn@ualberta.ca Page 4 of 11

AICT — Practical Python Programming Winter 2011

>>> "mylist®[0]
>>> "mylist™[2]
>>> list("mylist®)

>>> "m" 1In mylist

>>> "m" in "mylist”®

Note: An entire day could be devoted to a workshop on lists, strings, other sequences such as
tuples, and all kinds of indexing, formatting, operations, slicing, and methods! The examples
here are modestly minor. An excellent quick reference for many topics is available here:
http://rgruet.free.frfPQR26/PQR2.6.html.

First file
(In the Python Shell (interactive window), click FILE >>> NEW WINDOW

Tip: It's a good idea to type a few meaningful comments at the top of your script file. Once you

have opened a new file editor script window, type the following, including the blank lines for

readability (note: choose your preference for commenting using the ‘#' character OR the triple-
quoted string):

Date: yyyymmdd
By: your._.name@ualberta.ca
Description: This script is helping me learn Python

OR

Date: yyyymmdd
By: your.name@ualberta.ca
Description: This script is helping me learn Python

(Click FILE >>> SAVE as C:\Temp\ppp\sequences.py (do NOT forget the .py)
(In the interactive window, type help('SEQUENCES’) and give the documentation a

quick look through. Similarly, type help(‘(METHODS’) , help(‘string”), and help(‘list’) and
examine those topics. Return your focus to the script window and start typing:

ccn@ualberta.ca Page 5 of 11

AICT — Practical Python Programming Winter 2011

the following sequence commands and methods use palindromes

pall = "never odd or even"
pal2 = "kayak®
pal3 = "a man a plan a canal panama*

fun with strings - indices point between characters
print pall.capitalize()

print pall][O]

print pall[-1]

print pall[l:4]

print pall[0:5]

print pall[6:]

type the dot, press ctrl-space, and use arrow key to select
method

print pal2.upper()
print pal2[-3:]
length = len(pal2)

print “# of characters in "" + pal2 + """ =" + length

(Click RUN >>> RUN MODULE. Click OK to SAVE. Can you figure out what the error
message is? Change the ‘+’to a*,” or apply the str() function.

print "# of characters In """ + pal2 + " =", length
OR
print "# of characters In "" + pal2 + *" =" + str(length)

print pal2.strip("k")

ccn@ualberta.ca Page 6 of 11

AICT — Practical Python Programming Winter 2011

(Click RUN >>> RUN MODULE again (or press the F5 key). View the results in the
interactive window, cross-referencing with the code in the script window. Type:

print pal3.swapcase()

print “last word: * + pal3[21:1en(pal3)]

print pal3.strip(® panama®)

print pal3.Istrip(® panama®)

print pal3.rstrip(® panama®)

print pal3.replace("a", "0%)
(Click RUN >>> RUN MODULE again (or press the F5 key). Examine.
(Now, use the mouse cursor to click and drag to highlight/select all the text from “# fun

with strings..” to the end of the file. Click FORMAT >>> COMMENT OUT
REGION. Click RUN again to see what happens.

(Type some more, alternating between running the code and inspecting the results as
you go along. Note: Wherever you see blank lines would be a good point to RUN.

fun with lists

listl = list(pal3)
print listl

print listl.count("a%)
list2 = pal3.split(Q)
print list2

list3 = list2
list3.sort()

print list3

ccn@ualberta.ca Page 7 of 11

AICT — Practical Python Programming Winter 2011

print list2[0]

print list2[-2:]

list4 = [10, 20, 30, 40, 50]
print list4

print list4[1]

print len(list4)
list4.append(60)

print list4

not sequences, but useful functions to know
a=1

b=2

c, d = "three®, "100"

print a + b

print str(a) + str(b) + c

print int(d)

print float(d)

goodbye = "\nokay, that\"s pretty good for a first script file!"
print *** * len(goodbye)
print goodbye

Tip: Remember the useful trick of highlighting lines of your program and then using the
FORMAT menu to COMMENT OUT REGION and UNCOMMENT REGION. The INDENT
REGION and DEDENT REGION will come in handy when you start using loops and other
constructs requiring blocks of code.

ccn@ualberta.ca Page 8 of 11

AICT — Practical Python Programming Winter 2011

Coding conventions
Thoroughly read the Style Guide for Python Code:
http://www.python.org/dev/peps/pep-0008/

Fussing with the flow

Start a new file for each of the scripts below. Give them a meaningful file name with a .py
extension! Make notes (comments in the code will do!) if you think the instructor says something
important during this hands-on demonstration of programming with control and decision.

Flle Edit Format Run Options Windows Help

| »

if statements

let's check on how much tea yon drink

cupoftea = 5

it cupoftea > 2: | |
print 'Too much caffeine’

let's do some more checks
cupoftea = 5
it cupoftea > b:
print 'Too much caffeine’
elif cupoftea ==
change egquality to the less than operator to allow next elif evaluation
print "Hope some are decaf"”
elif cupoftea < 10:
this will not evalunate if previons is true
print 'Better than 10 cups’'
else:
final catch-all if none of the above ewvaluate to true
print cupoftea, 'cups of tea are all right!’ .

Extra ‘if example:

test if number is even or odd
number = Input('Tell me a number: ™)
if number % 2 == 0:

print number, "is even."
elif number % == 1:

print number, "is odd."
else:

print number,

IS not an integer.”

ccn@ualberta.ca Page 9 of 11

AICT — Practical Python Programming Winter 2011

Flle Edit Format Run Options Windows Help

conditional statements

ripe = True

true value = "Let's go huckleberry picking”
falsg_value = "That 's too kad; I'm hungry"
message = trune value if ripe else false value

print message

something a little more practical

temperature = 35

action fix = 'Turn air conditioner on in the server room'
action ok = 'All systems normal’

action = action fix if temperature > 45 =lse action ok

print action
in the real world you would have code that does the action

File Edit Format Run Options ‘Windows Help

while loops

let's count to ten
count = 0
while count < 10:
print count
will need to press ctrl-c to exit infinite loop
fix it with count = count + 1 and try running again

print 'All done! "’

let's try counting again

count = 1

while count <= 10: |
print count
don't ever forget the iterator
count += 1

print 'All done! "’

Ln: 61 [Cal: O

ccn@ualberta.ca Page 10 of 11

AICT — Practical Python Programming Winter 2011

Flle Edit Format Run Options Windows Help

for loops

looping through sequences
for letter in '"Python is so cool! ':
print letter

try counting to ten again
by list
items = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for i in items:
print i
by range
for i in range(l,11):
print i
by xrange
for i in xrange(l,11):
print i

print range(l,11)
print xzrange(l,11)

ol

Ln: 61 [Cal: O

Be sure to see the companion slides
for excellent e-resources to help you learn even more!

ccn@ualberta.ca Page 11 of 11

