
AICT – Pr

ccn@ualb

AICT Co

Prac
charlene
Thursday
9:00 a.m
ETLC 5-0

This is an
object-or
domains
of your w
want with
Hetland)

• p
• p
• ru
• is
• is

Through
get a tas

“

ractical Pytho

berta.ca

omputing Se

ctical
.nielsen@ua
y, February 2
. to 12:00 no
013

n informal in
riented, high
(www.pytho

way when yo
hout any has
. Python is:

owerful... an
lays well wit
uns everywh
s friendly... a
s Open

hands-on ex
te of just som

“If you're usi
y

on Programmi

eries Winter

l Pyth
alberta.ca
24th, 2011
oon

ntroduction to
-level progra

on.org) - but
ou write your
ssle, and lets

nd fast
th others
here
and easy to l

xercises, yo
me of the m

ing a progra
you had bette

ing

r 2011 Work

hon P

o the basic c
amming lang
really it is "a

r programs. I
s you write p

earn

ou will learn b
any library m

mming lang
er have a se

kshop

Progra

concepts an
guage that is
a programm
It enables yo
programs tha

basic calcula
modules.

uage named
ense of humo

ammi

d features o
s used in a w
ing languag
ou to implem
at are clear

ations, work

d after a ske
or.” www.py

ng

of Python - a
wide variety
e that knows

ment the func
and readabl

with coordin

etch comedy
ython.org

Winter

Page 1

n interpreted
of applicatio
s how to sta
ctionality you
le" (Magnus

nate data, an

y troupe,

r 2011

 of 11

d,
on
y out
u
Lie

nd

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 2 of 11

Tasks
The workshop’s coding samples and scripts are shown below as plain text and screen captures
from IDLE, so you know exactly what you should be typing in yourself. Please see the
companion slides for more information.

Note: This document is named ppp1_tasks_w2011.pdf and the companion slides are named
ppp1_slides_w2011.pdf. The companion slides have information on the following background
information, programming concepts, and tutorial theory:

1. Who, when, what, where, why, how?
2. Easy environments
3. Programming primer
4. Coding conventions
5. Fussing with the flow
6. Excellent e-resources

Environments and Primer
Tip: Make note of what happens with each of the lines of code.

The following text – except do NOT type the ‘>>>’ prompt – can be typed directly in to the
interactive window (also called the Python Shell window):

>>> import this

>>> help()

>>> import

>>> topics

>>> NUMBERS

>>> strings # note the lower case

>>> quit

>>> help(keywords) # now retype with quotes around 'keywords'

>>> help('print')

>>> print 'what is a blue moon?'

>>> abluemoon = 'second to last full moon in a four-moon season'

>>> print abluemoon

>>> for once in abluemoon:
 print once # we’ll learn more about looping later

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 3 of 11

Tip: Type Alt-P a couple of times (and try Alt-N)

>>> 1 + 2 + 3

>>> _

>>> _ - 4

>>> a = 1

>>> b, c = 2, 3 # we’ll do more variables later

>>> A + b * c # then type a + b * c

>>> 'stuff'

>>> _

Note: The default result variable ‘_’ is available only in the interactive window.

>>> # calculator expressions

>>> 1 / 2

>>> 1 / 2.0

>>> 1.0 / 2

>>> -3 ** 2

>>> (-3) ** 2

>>> 'p' + 'p' + 'p'

>>> 'p' * 3

>>> 'p' + 3

>>> 'Ha, ' * 5 + 'Ha!'

Note: Try a few calculations on your own.

>>> # commenting and docstrings

>>> # dear interpreter, please ignore all comments, thank you

>>> """ Geography is an important antidote to the "infantile"
habit of thinking the world is a laboratory in which we can
carry out all kinds of experiments, or a huge rubbish heap where
we can get rid of all our trash. """

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 4 of 11

>>> """ Type something
and type some more
and more
and then some more again
and maybe
put yourself out of your misery
and finish """

>>> print _

>>> # print statements

>>> print 'And now for something completely different!'

>>> print 'And now for something\ncompletely different!'

>>> print 'Green' + 'eggs' + 'and' + 'ham'

>>> print 'Green', 'eggs', 'and', 'ham'

>>> print 'Today is', 24, 'February', 2011

>>> print "This is my pretend long string \

that I just don't want to fit on one line"

>>> print "Let's go!"

>>> print 'Let\'s go!'

>>> print "She said, \"Hello\""

>>> print 'C:\new folder'

>>> print 'C:\temp'

>>> print 'C:\\newfolder', 'C:\\temp'

>>> # sequences (lists and strings)

>>> mylist = [123, 456, 'seven ate nine']

>>> mylist[0]

>>> mylist[1]

>>> mylist[2]

>>> mylist[-1]

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 5 of 11

>>> 'mylist'[0]

>>> 'mylist'[2]

>>> list('mylist')

>>> 'm' in mylist

>>> 'm' in 'mylist'

Note: An entire day could be devoted to a workshop on lists, strings, other sequences such as
tuples, and all kinds of indexing, formatting, operations, slicing, and methods! The examples
here are modestly minor. An excellent quick reference for many topics is available here:
http://rgruet.free.fr/PQR26/PQR2.6.html.

First file

In the Python Shell (interactive window), click FILE >>> NEW WINDOW

Tip: It’s a good idea to type a few meaningful comments at the top of your script file. Once you
have opened a new file editor script window, type the following, including the blank lines for
readability (note: choose your preference for commenting using the ‘#’ character OR the triple-
quoted string):

Date: yyyymmdd
By: your.name@ualberta.ca
Description: This script is helping me learn Python

OR

"""
Date: yyyymmdd
By: your.name@ualberta.ca
Description: This script is helping me learn Python
"""

Click FILE >>> SAVE as C:\Temp\ppp\sequences.py (do NOT forget the .py)

In the interactive window, type help(‘SEQUENCES’) and give the documentation a
quick look through. Similarly, type help(‘METHODS’) , help(‘string’), and help(‘list’) and
examine those topics. Return your focus to the script window and start typing:

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 6 of 11

the following sequence commands and methods use palindromes

pal1 = "never odd or even"

pal2 = 'kayak'

pal3 = 'a man a plan a canal panama'

fun with strings - indices point between characters

print pal1.capitalize()

print pal1[0]

print pal1[-1]

print pal1[1:4]

print pal1[0:5]

print pal1[6:]

type the dot, press ctrl-space, and use arrow key to select
method

print pal2.upper()

print pal2[-3:]

length = len(pal2)

print '# of characters in "' + pal2 + '" =' + length

Click RUN >>> RUN MODULE. Click OK to SAVE. Can you figure out what the error
message is? Change the ‘+’ to a ‘,’ or apply the str() function.

print '# of characters in "' + pal2 + '" =', length

OR

print '# of characters in "' + pal2 + '" =' + str(length)

print pal2.strip('k')

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 7 of 11

Click RUN >>> RUN MODULE again (or press the F5 key). View the results in the
interactive window, cross-referencing with the code in the script window. Type:

print pal3.swapcase()

print 'last word: ' + pal3[21:len(pal3)]

print pal3.strip(' panama')

print pal3.lstrip(' panama')

print pal3.rstrip(' panama')

print pal3.replace('a', '@')

Click RUN >>> RUN MODULE again (or press the F5 key). Examine.

Now, use the mouse cursor to click and drag to highlight/select all the text from “# fun
with strings…” to the end of the file. Click FORMAT >>> COMMENT OUT
REGION. Click RUN again to see what happens.

Type some more, alternating between running the code and inspecting the results as
you go along. Note: Wherever you see blank lines would be a good point to RUN.

fun with lists

list1 = list(pal3)

print list1

print list1.count('a')

list2 = pal3.split()

print list2

list3 = list2

list3.sort()

print list3

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 8 of 11

print list2[0]

print list2[-2:]

list4 = [10, 20, 30, 40, 50]

print list4

print list4[1]

print len(list4)

list4.append(60)

print list4

not sequences, but useful functions to know

a = 1

b = 2

c, d = 'three', '100'

print a + b

print str(a) + str(b) + c

print int(d)

print float(d)

goodbye = '\nokay, that\'s pretty good for a first script file!'

print '*' * len(goodbye)

print goodbye

Tip: Remember the useful trick of highlighting lines of your program and then using the
FORMAT menu to COMMENT OUT REGION and UNCOMMENT REGION. The INDENT
REGION and DEDENT REGION will come in handy when you start using loops and other
constructs requiring blocks of code.

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 9 of 11

Coding conventions
Thoroughly read the Style Guide for Python Code:
http://www.python.org/dev/peps/pep-0008/

Fussing with the flow
Start a new file for each of the scripts below. Give them a meaningful file name with a .py
extension! Make notes (comments in the code will do!) if you think the instructor says something
important during this hands-on demonstration of programming with control and decision.

Extra ‘if’ example:

test if number is even or odd
number = input("Tell me a number: ")
if number % 2 == 0:
 print number, "is even."
elif number % 2 == 1:
 print number, "is odd."
else:
 print number, "is not an integer."

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 10 of 11

AICT – Practical Python Programming Winter 2011

ccn@ualberta.ca Page 11 of 11

Be sure to see the companion slides
for excellent e-resources to help you learn even more!

